CASE FILE COPY NASA ER-66847/ 109854

GENERAL AMERICAN TRANSPORTATION CORPORATION

GATX.

PERFORMANCE TESTS OF AN

ORGANIC AMINE CARBON DIOXIDE REMOVAL SYSTEM

By A. J. Glueckert G. A. Remus

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

Prepared under Contract No. NAS 1-8360 by GENERAL AMERICAN RESEARCH DIVISION GENERAL AMERICAN TRANSPORTATION CORPORATION Niles, Illinois 60648

for Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

ABSTRACT

An experimental evaluation was conducted on a regenerable two-bed carbon dioxide removal system which utilized an organic amine sorbent. This sorber formulation absorbs ${\rm CO}_2$ in the presence of ${\rm H}_2{\rm O}$ vapor and thus does not require pre-drying the gas stream.

The primary objective of the test program was to relate the system performance of CO_2 removal rate, power, and water carry-over with CO_2 during regeneration to the operating parameters of air-flow rate through the bed, absorption-regeneration time, and bed cooling and heating rates. All other operation conditions were held constant. The Box-Wilson composite design was used in the experiment design, and to generate quadratic equations relating system performance to the operating conditions.

SUMMARY

An experimental evaluation was conducted on the regenerable two-bed carbon dioxide removal system originally designed, fabricated and delivered to NASA, Langley Research Center on NAS1-2915. The system was returned to GARD for testing in July 1968. The solid absorbent is an organic amine formulation which absorbs CO₂ in the presence of H₂O vapor and this does not require pre-drying the gas stream.

The primary objective of the test program was to relate system performance, i.e., CO₂ removal rate, power required and water carried over with CO₂ during regeneration to various operating conditions. The operating conditions varied in testing were air-flow rate through the bed, absorption-regeneration time, and bed cooling and heating rates. All other operation parameters were held constant. The Box-Wilson composite design was used to design the experiment and to generate quadratic equations relating system performance to the operating conditions.

The equations developed can be used to determine the optimum CO₂ removal capacity within the range of test conditions and based on total system weight penalty, when appropriate power, heating, and cooling penalties are specified. In addition the effect of specific mechanical design characteristics (heat transfer effects) were observed. The developed equations and the observed mechanical characteristics can be utilized to design an advanced system using this amine absorbent or to compare the present system to other CO₂ removal systems.

Other objectives achieved during this program were to perform a continuous duration test of at least 48 hours, to determine the effect of operating the system under off-design conditions; and to determine the effect of total operating time on the ability of the sorbent to maintain CO₂ absorption capacity.

FOREWORD

This report summarizes the work accomplished under Contract NAS1-8360 for testing of the GAT-O-SORB carbon dioxide removal system. This work was initiated on 24 July 1968 and completed on 29 May 1969. The program was performed by the General American Research Division of the General American Transportation Corporation, 7449 Natchez Avenue, Niles, Illinois 60648. The work was monitored by Mr. Rex Martin, National Aeronautics and Space Administration, Langley Research Center, Langley Station, Hampton, Virginia 23365.

The work reported herein was performed by personnel within the atmospheric Control Sections of GARD's Chemical and Life-Support Systems Group, under the direction of Mr. J. D. Zeff, and supervision of Mr. G. A. Remus; Mr. A. J. Glueckert served as project engineer and Mr. J. E. Kane as technician. Dr. F. Ozkan, statistician, assisted in the data analysis and computer programming.

TABLE OF CONTENTS

Section	ABSTR	Page
, , , , , , , , , , , , , , , , , , ,	SUMMA	
	FORE	ORD
1	INTRO	DUCTION
2	BACKO	ROUND
	2,1	Chemistry of Absorption and Regeneration 4
	2.2	Prototype Model
	2.3	Original Test Program
3	SYSTI	M TESTING
	3.1	Performance Characteristics 10
	3.2	Test Plan
		3.2.1 Selection of Operating Conditions 11
		3.2.2 Measurement of Response Characteristics 12
		3.2.3 Test Cycle
14	PROGI	AM TASKS AND TEST RESULTS
	4.1	System Checkout for Component Function 14
	4.2	Comparison of Old and New Absorbent
	4.3	Composite Design Test Plan
	4.4	Performance Test Results
		4.4.1 Performance Equations
		4.4.2 Effect of Operating Conditions on CO ₂ Removal Rate
		4.4.3 Effect of Operating Conditions on the Ratio Water Carry-Over/CO, Removed
		4.4.4 The Effect of Operating Conditions on the Ratio of Power/CO ₂ Removed
		4.4.5 Maximum and Minimum Operating Conditions 22
	4 5	Duration Test

TABLE OF CONTENTS

Section		Page
		4.6 Off-Design Tests
		4.7 Total Run Time
5 [.]		CONCLUSIONS AND RECOMMENDATIONS
		5.1 Conclusions
		5.2 Recommendations
APPENDIX	A	COMPUTER COMPUTATIONS
APPENDIX	В	INSTRUMENTATION
APPENDIX	С	EXPERIMENTAL TEST PLAN

LIST OF FIGURES

Figure No.	Pag	e
1	The GAT-O-SORB Carbon Dioxide Removal System 2	
2	Schematic Diagram of the GAT-O-SORB System 5	
3	The Effect of Cycle Time and Coolant Flow on CO ₂ Removal Rate	
14	The Effect of Air Flow and Coolant Flow on CO Removal Rate	
5	The Effect of Coolant Flow and Air Flow on Water Carry-over	
6	The Effect of Cycle Time and Air Flow on Power 26	
7	The Effect of Air Flow and Precooling on power 27	

LIST OF TABLES

Table No.	Page
1	Test Results in Original Program (1964) 8
2	Comparison of Original Test Performance and Present Test Performance
3	System Performance Characteristics
4	Off-Design Test Results
A-1	Correspondence Between Variable Number and Variables. 39
A - 2	Results for CO ₂ Removal Rate at p _{CO} equal 3.8 mm Hg. 40
A-3	Comparison of Responses for CO Removal Rate at pco equal to 3.8 mm Hg
A-4	Results for Water Loss at $p_{CO_{2}}$ equal 3.8 mm Hg 42
A-5	Comparison of Responses for Water carryover at pco equal to 3.8 mm Hg
A-6	Results for Power at $p_{CO_{2}}$ equal 3.8 mm Hg
A-7	Comparison of Responses for Power at p _{CO} equal 3.8 mm Hg
A-8	Results for CO_2 Removal Rate at P_{CO_2} equal 7.6 mm Hg. 46
A-9	Comparison of Responses for CO Removal Rate at p _{CO} equal 7.6 mm Hg
A-10	Results for Water Loss at p _{CO} equal 7.6 mm Hg 48
A-11	Comparison of Responses for Water Loss at p _{CO} equal 7.6 mm Hg
A-12	Results for Power at $p_{CO_{c}}$ equal 7.6 mm Hg 50
A-13	Comparison of Responses for Power at p _{CO} equal 7.6 mm Hg
A-14	Reduced Equation for CO ₂ Removal Rate at p_{CO_2} equal 3.8 mm Hg
A-15	Comparison of Responses for CO Removal Rate for Reduced Equation at p _{CO} equal 3.8 mm Hg 53
A-16	Results for Reduced Equation for Water Loss at p _{CO} equal 3.8 mm Hg

LIST OF TABLES

Table No.	Page
A-17	Comparison of Responses for Water Loss for Reduced Equation at p_{CO_2} equal 3.8 mm Hg 55
A-18	Results for Reduced Equation for Power at p _{CO} equal to 3.8 mm Hg
A-19	Comparison of Responses for Power for Reduced Equation at p _{CO₂} equal 3.8 mm Hg
C-l	Coded Values for Independent Variables 66
C-2	Central Composite Design for Tests at p _{CO2} 7.6 mm Hg
C-3	Central Composite Design for Tests at p _{CO2} 3.8 mm Hg
C-4	Polynomial Equation for Responses at p _{CO} equal to 7.6 mm Hg
C-5	Polynomial Equations for Responses at p _{CO} equal 3.8 mm Hg
c-6	Simplified Equations at 95% confidence level p _{CO} = 3.8 mm Hg
C-7	Simplified Equations Removed from Coded Form $p_{CO_2} = 3.8 \text{ mm Hg} 95\% \text{ confidence level 74}$

SECTION 1

INTRODUCTION

The removal of metabolic carbon dioxide is a necessary part of environmental control. To accomplish CO₂ removal in a weightless state and to avoid complicated phase separation techniques it is desirable that the sorbent be in the form of a solid. A regenerable absorbent which utilizes an amine was developed to meet this need by the Research Division of the General American Transportation Corporation.

The absorbent was originally developed for ${\rm CO_2}$ removal by GARD in 1962. After feasibility of the absorbent for ${\rm CO_2}$ removal in an environmental control system was demonstrated, GARD designed and fabricated a 2 man capacity prototype ${\rm CO_2}$ removal system. A photograph of the system is shown in figure 1.

In this cyclic two-bed system, one bed absorbs CO₂ from a flowing airstream while the other is being regenerated simultaneously by heating under moderate vacuum. Heat is transferred into and out of each bed by a liquid circulated through in-bed heat exchangers.

After the system was delivered to and tested by NASA it was returned to GARD for further testing. Under the present program, the effect of operating conditions on CO₂ removal capacity, water carry over, and power were determined and polynomial expressions relating the performance characteristics to the operating parameters were developed.

To obtain the best CO₂ removal system for a given application, all candidate systems must be evaluated on a comparable basis. Usually this is done on a weight basis which includes basic system weight, weight of spares

Fig. 1 THE GAT-O-SORB CARBON DIOXIDE REMOVAL SYSTEM

necessary to provide a chosen degree of reliability, and equivalent weight penalties for power, heat absorption, or heat rejection.

In order to obtain input information for evaluating the GAT-O-SORB system so that it can be compared to other systems, empirical polynomial expressions were developed which relate response characteristics to operating conditions. The polynomials do not furnish optimum operating conditions because no penalties are assigned for spares, power, water carryover, heat absorption, or heat rejection. If penalties were assigned, the polynomials would lead toward optimum operating conditions within the range that tests were conducted. Also the polynomials furnish design inputs which can be used for an advanced model of the GAT-O-SORB system.

SECTION 2

BACKGROUND

The amine process for carbon dioxide removal has several important advantages over other types of regenerable CO₂ removal processes. These advantages are 1) the ability to absorb CO₂ or other acid gases from a gas mixture without prior dehumidification of the gas stream, and 2) the ease of regeneration of the GAT-O-SORB absorbent when compared to other sorbents of the same absorption capacity.

2.1 Chemistry of Absorption and Regeneration

In the absorbing system carbon dioxide combines with the amine in the presence of water. An airstream with a 45°F dewpoint contains sufficient moisture for the reaction to proceed. In normal operation both water and carbon dioxide are removed from the gas stream during absorption.

During regeneration the carbonated absorbent separates into rejuvenated absorbent, carbon dioxide, and water vapor. The temperature and pressure of regeneration affect the relative amounts of CO₂ and H₂O desorbed. Since it may be desirable to minimize water carry-over the amount of water desorbed was measured as a system performance characteristic:

2.2 Prototype Model

The prototype model which was built under contract NAS1-2915 and used for this program was shown in Figure 1; the flow schematic is shown in Figure 2. The system contains 2 beds which alternate between absorption and regeneration modes. Each canister contains 15 pounds of GAT-O-SORB and the total weight of the system is 93 pounds. The system is contained within an envelope 19 inches x 24 inches x 33 inches. An additional control module is furnished so

Figure 2. SCHEMATIC DIAGRAM OF THE GAT-O-SORB SYSTEM

that the system can be tested in an environmental chamber, and parameters such as cycle time or bed precool time can be changed without entering the chamber.

As shown in Figure 2, system operation is dependent upon three flow loops: the main air-stream absorption loop, the vacuum regeneration loop, and the heat transfer liquid loop.

In the air loop the system blower circulates chamber air through a four way air/vacuum control valve and into the absorbing bed. In the absorbent bed carbon dioxide and water are removed from the air stream; CO₂-free air is returned to the chamber.

In the vacuum loop, a vacuum pump is connected to the four-way air/vacuum control valve. This valve connects the pump to the inlet of the bed in the regeneration mode. A check valve at the outlet of each bed isolates the bed during regeneration. The pump evacuates the bed and discharges the desorbed CO₂ and H₂O for collection or disposal.

In the heat transfer liquid loop, 50°F water passes through a four-way liquid valve into a heat exchanger within the absorbing bed during the absorption mode. The water cools this bed down from its regeneration temperature to the 60-80°F range required for efficient absorption. After exiting the absorbing bed the water, which has picked up heat, is further heated to 180°F with an electric heater. The 180°F water passes through the heat exchanger in the regenerating bed and heats the sorbent. The water then leaves the regenerating bed at a lower temperature and exits the system through the four-way liquid valve. The water is then cooled to 50°F and returned to the absorbing bed to complete the loop. In actual testing, discharged water was discarded, and fresh tap water was used continuously.

The four-way air/vacuum valve and the four-way liquid valve are synchronized so that the liquid is directed to the proper bed at the proper time. To provide a period for precooling the bed going into the absorption mode, the cooled heat-transfer liquid is directed into the bed heat-exchanger before the air stream is allowed to enter the bed. This interval is designated as "precool time".

2.3 Original Test Program

After the GAT-O-SORB unit was fabricated in 1964, the canisters were filled with absorbent and a series of tests were run 1) to verify that the system was operational, and 2) to obtain an approximation of the average CO₂ removal rate, water loss, and power requirements. The system was delivered to NASA LRC for further testing, then the system was returned to GARD in August 1968.

The original test program was run in the laboratory under ambient conditions. Carbon dioxide was fed to the inlet of the system blower at a rate which maintained the inlet CO₂ concentration at 1.0 percent. Inlet humidity varied according to ambient conditions.

The system was operated through 91 cycles during twenty-two different runs as shown in table 2. The parameters which were varied included CO₂ concentration, coolant water flow rate, coolant water temperature, inlet air temperature, cycle time, and bed pre-cool time. The maximum average CO₂ removal rate, 0.41 lb per hour occurred when the CO₂ concentration was 1.0%, water flow 4 gph, water temperature 85°F, air temperature 79°F, cycle time 30 minutes and zero bed pre-cool time. During all tests the air flow rate was 14 cfm.

Table I. TEST RESULTS IN ORIGINAL PROGRAM (1964)

Run No.	Feed Comp.	Water Flow Rate gph	Water Temp.	Air Temp.	Air Relative Humidity	Time Cycle Minute	Precool Time Minute	1	CO ₂ moval . lb/hr	Water Loss Ratio lb H ₀ O lb CO ₀	Conti Po w/o H	wer	Makeup Heater Power Per Man Watts Man Capacity	Total Watts Man
1	1	3	75-80	90	40	30	2	1.93	0.235	0.315		88	Mail Capacity	Man
2A	1	3	75-80	80	38-43	i	2	2.69	0.330	0.281		 		
2B	1	3	80	80	39		4	2.45	0.294				140 BIT BIS	
. 3	1	5	75-85	75-77	44-52		2	2.71	0.325	0.50				
4¥	1	2.75	75-85	78	50-63		0	2.45	0.294				154	252
4B	1	0.85	85				Ti	0.975	0.117				160	306
4C	1	1.95	85	78	42			1.97	0.236				125	248
4D	1	4.05	85	79	43			3.45	0.417				163	232
5	1	2.0	65	81-82	41-42	*		1.64	0.200	0.150			175	319
6	1	0.8-1.0	66-72	79-80	48-51	20		0.42	0.052	0.115			340	916
7	1	4.0	68-75	82-85	43	40		3.10	0.381	0.453			185	282
8	0.5	4.0	60-70	77-80	35-41	20		1.25	0.153	0.520			445	633
9	0.5	1.0	68-78	78-83	35-50	20		0.45	0.051	0.20			467	1042
10	0.5	2.0	61-69	85-87	33-35	30		1.25	0.153	0.28			262	450
11	0.5	1.0	71-78	78	41	40		0.04	0.005	Very High			Very High	
12	2.0	2.0	59-84	77	40-43	30		3.10	0.382	0.10			118	194
13A	1	2.0	56-63	77	40-42	30	\ \	2.08	0.256	0.218			165	27 £
13B	1	2.0	56 - 63	77	40-42	30	2	2.28	0.280			-	144	247
14	1	2.0	80-87	77	42	30	0	NO TE	ST RESULT	S - MECHANICAL	DIFFIC	JLTY		
15A	1	2.0	70	90	Approx. 50	30		2.89	0.356				114	195
15B	1	2.0	90	90	Approx. 50	30		2.03	0.250				154	269
15C	1	2.0	114	90	Approx. 50	30		1.62	0.200				175	319
15D	1	2.0	80	90	Approx. 50	30	¥	2.33	0.287		'	1	115	215

TOTAL NUMBER OF CYCLES RUN -> 91

For most tests run at an inlet ${\rm CO_2}$ concentration of 1.0 percent $({\rm p_{\rm CO_2}}=7.6~{\rm mm~Hg})$ the ${\rm CO_2}$ removal rate ranged from 0.2 to 0.3 lb per hour. When the inlet ${\rm CO_2}$ concentration was decreased to 0.5 percent $({\rm p_{\rm CO_2}}=3.8~{\rm mm~Hg})$ the ${\rm CO_2}$ removal rate decreased to a maximum of 0.15 lb per hour.

SECTION 3

SYSTEM TESTING

Under the present program the GAT-O-SORB Carbon Dioxide Removal System was tested to determine the relationship between system performance characteristics and varied operating conditions.

3.1 Performance Characteristics

The system performance characteristics that were measured were:

- l. Average CO₂ removal rate, 1b CO₂/hr
- 2. Water carry-over during regeneration, lb $\rm H_2O/lb~CO_2$
- 3. System power, kwhr/1b CO₂

The average CO_2 removal rate was determined by dividing the weight of CO_2 absorbed during a cycle by the length of the absorption period, i.e., cycle time. The weight of CO_2 absorbed was derived from the automatic CO_2 feed system which continuously maintained the CO_2 partial pressure at a fixed level of 7.6 mm Hg (Test Plan 1) or 3.8 mm Hg (Test Plan 2).

Water carry-over was determined by weight analysis of the total desorbed ${\rm CO}_2$ and water vapor mixture for the complete series of cycles in a test run.

Power was measured directly, indicating the integrated input for the electric heater, air blower, and controls, for the complete series of cycles in a test run.

3.2 Test Plan

To determine system performance characteristics, the operating conditions were varied according to values established by the Box Wilson composite design. A detailed description of system instrumentation used in measurements and performance observation is shown in appendix B.

3.2.1 Selection of Operating Conditions

The primary operation parameters specified in the contract are cycle time, precool time, coolant flow rate and air flow rate.

Because the Box Wilson Central Composite design was the test plan selected, five levels of each parameter were tested to furnish 2 factorial points, 2 star points, and a center point. Previous experience and system design, i.e., fan size, heater size, and coolant pump capacity delineated the testing range of the parameters. The levels selected for each parameter were:

Cycle time; 10, 20, 30, 40, 50 minutes

Precool time; 0, 1.5, 3.0, 4.5, 6.0 minutes

Coolant flow; 1, 2, 3, 4, 5 gph

Air flow; 6, 8, 10, 12, 14 cfm

Cycle time was the length of time for absorption or for regeneration.

The time of absorption was concurrent with and equal to the time of regeneration.

Precool time was the time elapsed between the start of cooling of the absorbing bed and the starting of air flow through the absorbing bed. The purpose of this delay was to precool the bed being transferred from the regeneration mode to the absorption mode before air was blown through the bed.

The heat transfer liquid rate is the volumetric liquid rate through the in-bed heat exchangers in the absorbing and regenerating beds.

Air flow rate is the volumetric flow of air through the absorbing bed.

The Box Wilson design determines which combination of parameters are tested. These are shown in appendix C.

Fixed operating conditions during testing were:

l.	Chamber	pressure	360 mm Hg
		T	J

2. $p_{CO_{C}}$ 7.6 mm Hg, in Test Plan 1

3.8 mm Hg, in Test Plan 2

3. Inlet air temperature to blower 50°F (bed inlet temperature

averaged 25°F higher due to

blower heat-up)

4. Inlet air dew point 45°F

5. Heat transfer coolant liquid temperature 50°F

6. Regeneration liquid temperature 180°F

7. Vacuum for regeneration 40 mm Hg absolute pressure

3.2.2 Measurement of Performance Characteristics

The following methods were used to determine the variation of ${\rm CO}_2$ removal rate, ratio of ${\rm H_2O/CO}_2$, and ratio of Power/CO $_2$.

3.2.2.1 CO Removal Rate

The carbon dioxide removal rate was determined by measuring the volume of pure CO₂ which needed to be added to the chamber in order to maintain the bulk chamber concentration at a constant preselected level.

The concentration of CO_2 within the chamber was measured and the output of the CO_2 sensor was used to control the CO_2 feed as the CO_2 concentration fell below the predetermined set-point. Thus the volume of CO_2 added to the chamber and the length of time of the test run were used to calculate the average CO_2 removal rate for the test. Corrections were made for CO_2 lost from the chamber

through the trim pump which periodically corrects chamber pressure variation resulting from air in-leakage.

3.2.2.2 Water Loss/CO Ratio

The ratio of $\rm H_2O/CO_2$ removed during regeneration was determined by weighing the amount of water trapped out of the regeneration vacuum loop during the length of time for a test. Thus the total amount of water collected during a test divided by the total amount of $\rm CO_2$ removed during the same test gives an average ratio of $\rm H_2O/CO_2$ for a particular test.

3.2.2.3 Power/CO Ratio

The total energy used by the GAT-O-SORB system for the duration of a test was measured with a watt-hour meter. This included power to operate the blower and controls plus electric power to heat the fluid entering the regenerating bed. This energy divided by the total amount of CO₂ removed during the test produced a number equal to average energy/weight of CO₂ or average power/CO₂ removal rate.

An ammeter was used to measure the required current for operation of the GAT-O-SORB system. The current indicated the instantaneous power level and was used to verify proper functioning of the system components. The ammeter was also used to indicate when the liquid loop electric heaters were on or off.

3.2.3 Test Cycle

A test run consists of two parts. The first part of a run is known as "pre-run" during which the system comes to thermal equilibrium. The normal prerun lasts for three or four cycles. The second part of the run is the data run during which the system performance characteristics are measured as a function of operating conditions.

SECTION 4

PROGRAM TASKS AND TEST RESULTS

The testing program included several auxiliary tasks in addition to the major task of system performance testing. The program tasks in chronological order were:

- checking all mechanical and electrical system components to verify proper function for continuous and sustained operation.
- 2) comparing the CO₂ absorption capacity of original absorbent with fresh absorbent to ascertain stability, retention of chemical properties, and other unexpected effects of long duration storage.
- 3) designing the experiment by using the Box Wilson central composite design technique.
- 4) conducting the performance testing of the total CO, absorption system.
- 5) conducting a duration test, consisting of continuous operation for 48 to 96 hours, to demonstrate absorbent stability and system reliability.
- 6) conducting off-design tests to show specific effects on system performance.

4.1 System Checkout for Component Function

Two changes were made in the system during the preliminary checkout. The electric water switch valve with manual override was replaced with a 4-way solenoid valve; the ports in the original valve were small and clogged easily. The new valve with 9/64" orifices eliminated clogging and lowered the pressure drop in the coolant loop.

An 850-watt heater was installed in the liquid loop to replace the 550-watt unit originally supplied. This provided the additional heating capacity required for circulating the heat-exchanger liquid at required higher rates.

4.2 Comparison of Old and New Absorbent

After the GAT-O-SORB system was returned to GARD, all of the original absorbent was removed from the canisters. Undersize material was removed by screening. A sample of the original absorbent from each bed was tested in a 1 inch glass tube absorbing column toodetermine CO₂ removal capacity. The average dynamic capacity of the sorbent for 3 regeneration-absorption cycles for each sample was 1.4 percent by weight. This capacity was the same as determined in the original tests. The conditions of these tests were:

CYCLE:

30 minutes absorption - 30 minute regeneration

FEED GAS:

1% CO, in air

AIR FLOW RATE: 4 SCFH

REGENERATION: 180°F at 40 mm Hg absolute pressure

After completing testing in the small scale bed, the right absorbent system canister was filled with 15-3/4 pounds of 10/20 mesh original absorbent, and the left canister with 15-3/4 pounds of 10/20 mesh fresh absorbent. This allowed continuous comparison of the old and new absorbent throughout the test program while operating under identical test conditions. No significant difference was detected between the performance of the two beds throughout all of the tests.

After comparing the old and new absorbent materials an additional shake-down test at one-atmosphere was run under conditions which were similar to the tests performed in 1964.

The test conditions and results summarized in table 2 show that the ${\rm CO}_2$ removal rate was similar, although not identical, to test 13-B of the original test program. The difference in removal rate can be attributed to the fact that, in the original test program, the temperature of the heating fluid going to the bed in the regeneration mode was approximately 5 to 10°F warmer than in the shakedown test. An 850-watt liquid heater was used in original tests while a 550-watt heater was used in the shakedown test. A new 850-watt heater was installed and used in all subsequent tests. The effect of higher inlet air humidity in the shakedown test was assumed neglible because off-design tests (table 5) show the effect of inlet air dew point is small.

The two CO₂-removal rates being nearly equal is highly significant, indicating that the absorbent did not deteriorate either during the original test program or while being stored for four years.

4.3 Composite Design Test Plan

The Box Wilson Central Composite design was used to design the experiment and to develop a quadratic polynomial equation for ${\rm CO_2}$ -removal rate, water loss, and power in terms of the cycle time, precool time, heat-transfer liquid flow rate, and air flow. The experiment design is based on a two-level-factorial design with star points and center points. A series of tests based on the factorial design were run first to verify that the tests were performed in the correct range. The two-level-factorial design yielded only linear relationships. To obtain a quadratic effect, testing at three levels was required. For a complete three-level-factorial design plan a total of 81 tests would be required. The Central Composite design has the advantage of significantly reducing the number of tests while not significantly reducing the precision of the regression coefficients determined for the quadratic polynomial.

TABLE 2

COMPARISON OF ORIGINAL TEST PERFORMANCE AND PRESENT TEST PERFORMANCE

Test Parameters	Test 13-B (July 1964)	Shakedown Test 10-2-68
	a" ,	
Chamber Pressure	l atm	1 atm
Chamber p_{CO_2}	7.6 mm	7.6 mm
Cycle Time	30 min	30 min
Air Valve Delay	2 min	2 min
Coolant Flow	2 gph	2 gph
Heating Fluid Temp	185 - 190°F	180°F
Inlet Air Temp	77°F	75 - 85°F
Inlet air Relative Humidity	40-42%	70-75%
Air Flow	14 cfm	14 cfm
Results		
CO ₂ Removal Rate	0.28 lb/hr	0.24 lb/hr

4.4 Performance Test Results

The test design produced coefficients for all first order and second order terms in the polynomial expression. The second order terms are composed of square terms and two level interaction terms. Higher level interactions were assumed to be insignificant and were neglected. Each coefficient was tested by a statistical method to determine if the term was significant or negligible. The results of the "t" test used are shown in appendix C.

4.4.1 Performance Equations

As shown by the high "F" value in appendix A, the results of the experiments run at a p_{CO_2} level of 3.8 mm Hg indicated a high degree of correlation. Therefore, the "t" test was used to select all coefficients which had a 95% or greater confidence level. The resulting simplified performance equations were:

$$Y_1 = -.644 + 0.0139 A + 0.167 C + 0.050 D$$
 (1)
-0.000096 $A^2 - 0.0170 C^2 - 0.0025 D^2 - 0.00176 AC$

$$Y_2 = 0.187 + 0.888 C - 0.066 D - 0.148 C^2$$
 (2)

$$Y_3 = 238 - 5.58 A - 41.0 B - 12.3 D + 0.0671 A^2 + 4.1 BD$$
 (3)

where:

$$Y_1 = CO_2 \text{ removal rate, } \frac{1bCO_2}{hr}$$
 $Y_2 = \text{Water carry over, } \frac{1bH_2O}{1bCO_2}$

$$Y_3 = Power, \frac{kwhr}{1bCO_S}$$

A = Cycle time, minutes

B = Air valve delay, minutes

C = Water flow, gal/hr

D = Air flow, cfm

Simplified equations are not presented for the experiments run at a $p_{\rm CO_2}$ level of 7.6 mm Hg because the results for this set did not have high correlation. The confidence level decreased to 70% before significant terms appeared in the polynomial expressions.

The primary objective of this program was to determine the effect of operating condition on performance characteristics. This could not be accomplished from a purely theoretical approach because all of the necessary chemical and physical properties of the absorbent were not known. Properties such as equilibrium CO_2 and $\mathrm{H}_2\mathrm{O}$ partial pressures in the vapor phase, diffusion rates at the absorbent surface, and effective film transfer coefficients, must be known in order to solve the mass transfer and heat transfer equations associated with predicting CO_2 absorption and desorption rates. In spite of this lack of information certain effects can be estimated based on knowledge of how the system operates.

4.4.2 Effect of Operating Conditions on CO2 Removal Rate

The operating conditions affected the average ${\rm CO}_2$ removal rate in the manner described.

4.4.2.1 Cycle Time

Equation 1 shows that air increase in time will produce an increase in CO_2 removal rate until a maximum point is reached. Then any additional increase in cycle time will decrease CO_2 removal rate. The equation shows that the optimum cycle time shifts and is dependent upon the interaction between cycle time and coolant flow.

4.4.2.2 Precool Time

Precool Time had no significant effect on CO₂

Removal Rate.

4.4.2.3 Liquid Flow Rate

Likewise equation 1 shows that an increase coolant flow rate will increase CO_2 removal rate until a maximum CO_2 removal rate is obtained. Then any additional increase in coolant flow will decrease CO_2 removal rate. The point of optimum CO_2 removal as a function of liquid flow shifts because of the interaction between liquid flow rate and cycle time.

4.4.2.4 Air Flow

An increase in air flow should increase the ${\rm CO}_2$ removal rate because an increase in air flow increases the average partial pressure of ${\rm CO}_2$ in the air stream within the absorbing bed. Thus the average gradient of ${\rm CO}_2$ in the gas phase and that held on the solid absorbent is increased. This increase in the gradient between the two phases should increase the rate of ${\rm CO}_2$ transferred from the air stream to the sorbent. Also, if the airstream cools the absorbent as the sorbent changes from the regeneration to absorption modes, an increase in air flow should increase bed cooling and therefore increase ${\rm CO}_2$ removal rate because the absorbent has increased capacity for ${\rm CO}_2$ as bed temperature decreases.

This behavior was verified by the experimental results as air flow increased from 6 to 10 cfm. Unexpectedly an increase in air flow beyond 10 cfm produced a decrease in CO₂ removal rate. This was caused by the air stream heating the bed. It was observed that the exit temperature from the air blower into the absorbing bed ran about 20°F higher than the inlet air temperature of 50°F

when the air flow was 6 to 8 cfm. When air flow was increased to the maximum of 14 cfm, the increase in temperature was about 15°F. This temperature rise was due to heat conduction from the blower motor and frictional effects within the blower. Thus a significantly greater amount of heat is added to the absorbing bed at high air flow.

The CO₂ absorption capacity consequently decreased as air flow increased. Thus air flow is useful in cooling an absorbing bed from 180° to 75°F, but opposes the effect of the 50°F liquid coolant in cooling the bed between 75° to 50°F.

. 4.4.3 Effect of Operating Conditions on the Ratio Water Carry Over/CO₂ Removed

An increase in cycle time, coolant flow and air flow should increase water carry over rate. Equation 2 indicates that cycle time affects the water absorption and desorption in the same manner as $\rm CO_2$ absorption and desorption because there is no term for cycle time in the equation for the $\rm H_2O/CO_2$ ratio.

The presence of terms in equation 2 for liquid flow and air flow show that these operating conditions affect the water carry over rate differently from the $\rm CO_2$ removal rate. In other words, the $\rm H_2O/CO_2$ ratio would equate to a constant number if the operating conditions affected water carry over and $\rm CO_2$ removal in the same way.

4.4.4 The effect of Operating Conditions on the Ratio of Power/CO2

An increase in air flow should increase the amount of heat removed from the absorbing bed; and this will increase the amount of heat required for subsequent regeneration of the bed. Thus an increase in air flow causes an increase in thermal power required.

However increased air flow also raises the ${\rm CO}_2$ removal rate, therefore the behavior of the power/ ${\rm CO}_2$ ratio cannot be reliably estimated.

In contrast liquid flow can either increase or decrease the thermal power required; an increase in thermal power occurs when an increase in liquid flow causes more heat to be lost from regenerating bed than is transferred out of the absorbing bed; less power is required when the reverse occurs.

An increase in liquid flow generally will raise the ${\rm CO}_2$ removal rate. Again the behavior of the Power/ ${\rm CO}_2$ ratio with respect to liquid flow cannot be reliably predicted.

4.4.5 Maximum and Minimum Operating Conditions

Experimental test conditions which produced maximum CO₂ removal rate, minimum ratio of water/CO₂ and minimum ratio of power/CO₂ for both test plan 1 and test plan 2 are summarized in table 3. Graphs of performance characteristics as a function of operating conditions are shown in figures 3, 4, 5, and 6. These plots are derived from the equations 1, 2 and aid in visualizing where maxima or minima occurs.

4.5 Duration Test

The objective of the duration test was to run the GAT-O-SORB system continuously for a minimum of 48 hours. The actual test lasted for 73 hours and was terminated when the system air blower failed.

The blower was designed for one atmosphere operation and overheated during one-half atmosphere operation. At one-half atmosphere the blower motor cooling fan does not dissipate all of the heat which the motor produces.

All other components performed satisfactorily. The conditions for the duration test were:

Figure 3. The Effect of Cycle Time and Coolant Flow on ${\rm CO_2}$ Removal Rate

Figure 4. The Effect of Air Flow and Coolant Flow on CO₂ Removal Rate

Figure 5. The Effect of Coolant Flow and Air Flow on Water Carryover

Figure 6. The Effect of Cycle Time and Air Flow an Power

Figure 7. The effect of air flow and precooling on power

TABLE 3 System Performance Characteristics

÷	lb CO ₂ /hr.	Performance lb H ₂ 0/lb CO ₂	кwн/1ъ со ₂		Operatin Precool Time Min		
A. Test Plan 1, $p_{CO_2} = 7.6 \text{ mm Hg}$							
1. Maximum CO ₂ Removal Rate	0.33	0.48	2.9	20	1.5	14	8
2. CO ₂ Capacity at min.			5				
1b H ₂ 0/1b CO ₂	0.20	.24	4.5	30	3.0	3	10
3. CO ₂ Capacity at min.							
power/lb CO ₂	0.30	0.32	2.0	20	1.5	2	* 8
B. Test Plan 2, $p_{qq} = 3.8 \text{ mm Hg}$							
B. Test Plan 2, $p_{CO_2} = 3.8 \text{ mm Hg}$							
1. Maximum CO ₂ Removal Rate	0.15	1.00	5.5	30	3.0	3	10
2. CO2 Capacity at min.							
1b H ₂ 0/1b CO ₂	0.078	0.22	14.0	30	3.0	5	10
3. CO ₂ Capacity at min.							
power/lb CO ₂	0.142	0.81	5.3	30	6.0	3	10

Inlet air dew point 40°F

Air valve delay 3.0 min

The average responses for the overall duration test were:

CO₂ removal rate 0.12 lbCO₂/hr

Water carry-over 0.70 lbH₂O/lbCO₂

Power 6.5 kwhr/lbCO₂

The duration test did prove that other than the blower motor failure, the system was capable of continuous operation and was able to maintain its CO, removal rate throughout the test.

4.6 Off-Design Tests

Off-design tests were run to determine how well the system performed when certain design parameters were varied. These parameters include total pressure, CO₂ partial pressure, regeneration vacuum, regeneration temperature, inlet air temperature and humidity.

The tests were run under conditions similar to the center-point tests of the central composite design except for the off-design parameter being tested.

The off-design tests revealed that the CO₂-removal capacity of the system is not seriously affected by off-design conditions except for the heat-transfer fluid temperature. This agrres with the original work in which the minimum temperature for regeneration was found to be about 140°F.

4.7 Total Run Time

During the performance of this contract in which the GAT-O-SORB system was tested at GARD with original absorbent in the right canister and fresh absorbent in the left canister, 593 hours of running time were accumulated on the system. This includes 55.5 hours of prerun shakedown tests at one atmosphere and 537.5 hours of actual testing at one-half atmosphere.

TABLE 4
OFFEDESIGN TEST RESULTS

Cond. Changd	Test	CO Rate 1b2CO hr	Water Loss 1bH_0 1bC02	Power <u>kwhr</u> lbCQ	Total Press mm Hg	CO ₂	Regen Press mm Hg	Coolant Temp °F	Regen Temp °F	Inlet Gas Temp °F	Inlet Gas Dew Point °F
	*	0.17	0.69	5.1	380	7.6	40	50	180	45°	40°
Total Press	39	0.20	0.59	4.9	<u>760</u>	15.2	ųО	50	180	45°	40°
Regen Press	40	0.14	0.77	5.8	380	7.6	<u>80</u>	50	180	45°	40°
Regen Temp	<u>147</u>	0.09	0.68	7.4	380	7.6	40	50	<u>150</u>	45°	40°
CO ₂ mm ² Hg	43	0.17	1.33	4.8	380	<u>15.2</u>	40	50	180	45°	40°
Regen Press	1414	0.13	0.64	6.0	380	7.6	20	50	180	45°	40°
Inlet Dew Pt.	45	0.16	0.25	4.5	380	7.6	40	80	180	80°	_70°

*The standard consists of the average of the 7 center point tests. For all tests

cycle time = 30 min
air valve delay 3 min

coolant flow 3 gph

air flow 10 cfm

SECTION 5

CONCLUSIONS AND RECOMMENDATIONS

The following conclusions are based on the data obtained from the experiments performed during this contract, and the recommendations are based on the conclusions and on design and absorbent modifications which would improve efficiency.

5.1 Conclusions

1. The CO₂ removal rate is directly dependent on air flow, coolant flow, and regeneration heat rate up to values of 8 cfm, 4 gph, and then decreases with further increase in these parameters. At higher air flow rates the blower heat conduction to the bed increased and raised the temperature of the absorbing bed, causing decreased capacity. As the coolant flow rate increased the coolant was heated slightly as it passed through a metal switch valve common with the hot liquid loop, and thus the bed cooling was decreased resulting in decreased capacity. Finally, at higher heating liquid flow rates, the liquid heater could not maintain the fluid at the desired 180°F level and the lower regenerating bed temperature caused a decrease in capacity.

However, under more ideal equipment conditions the average CO₂ removal rate should have increased with increased air flow, increased absorbing bed cooling, and increased regenerating bed heating rates.

The CO₂ removal rate would be expected to increase with a decrease in cycle time because more fresh absorbent is brought on stream per unit time. The CO₂ capacity was lower than expected at short cycle times, probably because the finite time required for the absorbent to be cooled before it can begin absorbing CO₂ takes up a greater portion of the cycle time. Thus the CO₂ removal rate was restricted by (1) the heating effect of the air blower, (2) the heat transfer through the liquid switch valve, (3) the limited heating capacity of the liquid heater, and (4) the capacity of the in-bed heat exchangers.

Operating with these mechanical restrictions the highest ${\rm CO}_2$ removal rate achieved was 0.15 lb/hr when the ${\rm p_{CO}}_2$ was 3.8 mm, and 0.33 lb/hr when ${\rm p_{CO}}_2$ was 7.6 mm. This corresponds to a 1.5 and 3.3 man capacity system respectively. For tests at a ${\rm p_{CO}}_2$ of 3.8 mm Hg and at low liquid flow, 1 to 3 gph, an increase in cycle time produced a proportional increase in ${\rm CO}_2$ removal rate. At high liquid flow, 4 or 5 gph, an increase in cycle time initially caused a proportional increase in ${\rm CO}_2$ removal, then a maximum, and finally a decrease with further increase in cycle time.

2. Power for controls, valves, and the blower was essentially constant. Power for the liquid heater was primarily a function of CO_2 removal rate and heat loss. Power should increase with increased air flow, increased absorbing bed cooling, increased regenerating bed heating, and decreased cycle time. These operating parameters produced the same general effect on power as on CO_2 removal rate. If both power and CO_2 removal rate are influenced in the same manner and degree by the operating parameters, the equation for the ratio of power/ CO_2 would equate to a constant. The equation did not equate to a constant indicating that power and CO_2 removal rate are influenced to a difference degree by each operating parameter. Since neither rate can be predicted with accuracy it is not possible to theoretically predict the effect of operating parameters on the ratio of these rates.

If the thermal power for heating the regenerating bed can be provided from waste heat at $180^{\circ}F$, the electrical power for operation of the system, i.e., blower and controls, would be reduced and influenced only by air flow rate. At inlet CO_2 partial pressures of 3.8 and 7.6 mm Hg, the minimum ratios of power to CO_2 were 5.3 and 2.0 $\frac{\text{kwhr}}{\text{lb}}$ respectively. These minima occured

approximately at the maximum $\rm CO_2$ removal rates. If 180°F waste heat is available for heating the regenerating bed, the ratios would be reduced to 2.0 and 0.96 $\frac{\rm kwhr}{\rm lb}$ or 200 and 96 watts per man, respectively.

3. The water carryover, i.e.,water removed from the air stream during $\rm CO_2$ absorption and released with $\rm CO_2$ during regeneration, should be influenced by the operating parameters in a manner similar to the way the operating parameters influence $\rm CO_2$ absorption and desorption. If water carryover is affected in the same manner and degree as $\rm CO_2$ removal, the equation for the ratio of $\rm H_2O/CO_2$ would equate to a constant. The equation for this ratio did not equate to a constant, indicating the water carryover and $\rm CO_2$ removal are not influenced in an identical manner and degree. At inlet $\rm CO_2$ partial pressures of 3.8 and 7.6 mm Hg, the minimum ratios for water carryover/ $\rm CO_2$ were 0.22 and 0.24 lb $\rm H_2O/lb~CO_2$. The minima occured at random and at apparently unrelated levels of $\rm CO_2$ removal rate.

The only conditions which affected the water loss ratio were liquid flow and air flow. An increase in air flow produced a proportional decrease in water loss for the entire test range. Liquid flow at 3 gal/hr produced a maximum $\rm H_2O/CO_2$ ratio. The minimum water loss ratio occured when the liquid flow was either 1 or 5 gal/hr. Cycle time and precool time did not influence the water loss ratio.

4. A 73 hour duration test showed the ability of the system to function reliably under continuous unattended operation.

The system was operated for 593 hours without a decrease in CO_2 removal capacity. Thus the absorbent was shown to be suitable for long term continuous use.

- 5. The system can be operated under most off-design conditions without significantly changing the overall capacity for ${\rm CO_2}$ removal. The most significant change was regeneration temperature, where a decrease from 180°F to 150°F, lowered the ${\rm CO_2}$ capacity by 50%.
- 6. The absorbent appears to have long shelf live because no difference was detected between the absorbent formulated in 1964 and fresh absorbent made in 1968.

5.2 Recommendations

The performance of the GAT-O-SORB system could be improved by various changes in the system and absorbent materials.

- l. The following design changes should be made on the present system to increase the ${\rm CO}_{\rm O}$ removal rate.
- a. The present 850 watt liquid heater should be replaced with a larger capacity heater to prevent the fluid entering the regenerating bed from falling below 180° F at high liquid flow rates. This would increase peak power but not necessarily the ratio of power / lb. of ${\rm CO_2}$ because the ${\rm CO_2}$ removal rate would increase.
- b. The present 4-way liquid switch valve should be replaced with two 3-way switch valves to prevent heat transfer through the valve from the warm fluid leaving the regenerating bed to the cool fluid entering the absorbing bed.
- c. An alternate to using an electric heater in the system would be to provide separate hot and cold fluid loops for regeneration and absorption.

 This would be equivalent to operating with liquid available from the waste heat loop, and coolant from the coolant system loop.

It is anticipated that the above changes would significantly increase the CO₂ removal rate, while the power penalty per pound of CO₂, or per man, would be held the same, or possibly decrease.

- 2. The design of the in-bed heat exchanger should be improved to increase CO₂ removal rate. These improvements would consist of:
- a. Depositing the absorbent directly on the fins of the in-bed heat exchanger, or
- b. Providing more actual heat-transfer surface area in the bed by changing of the heat exchanger configuration.

- 3. The capacity of the absorbent might be increased by altering the composition of the granules. Possible alterations would include:
- a. Making formulations containing carriers possessing higher surface areas and
 - b. Altering the ratio of absorbent ingredients.
- 4. Investigate the possibility of using a low power rapid-cycling process of "heatless desorption" for this absorbent.
- 5. Investigate lower pressure and correspondingly lower temperatures for regeneration to decrease total heat input.
- 6. Determine the composition of the effluent of the absorbing bed, and of the regenerating bed to verify that no undesirable trace contaminants leave or are generated by the system, and that high purity CO₂ is recovered.
- 7. The polynomial expressions developed from the Box-Wilson composite design yield good results for the present system; however the expressions are only applicable within the range of parameter values tested and only for the present system. General theoretical equations based on mass and heat transfer should be developed because these equations would be applicable for a broader range of parameters for any system which uses the GAT-O-SORB absorbent. In order to develop these equations, physical and chemical properties of the absorbent, heat of reaction, and mass transfer coefficients should be determined.

Bibliography

- 1. Glueckert A., Nuccio P., and Zeff J., "Final Technial Report for a a Prototype Regenerable Carbon Dioxide Removal System." GATC Report MRD 1230-4050 Contract NAS1-2915, August 1964.
- 2. Cochran W., and Cox G., "Experimental Design" 2nd Ed. Wiley 1957.
- 3. Bowker A., Lieberman G., "Engineering Statistics" Prentice Hall, Inc. 1959.
- 4. Box G., and Wilson K., Journal of the Royal Statistical Society, Series B (Methodological), Vol. XIII No 1. 1951.
- 5. Box G., and Hunter J., Technometrics, Vol 3 No. 3, August 1961, pp. 311-351.

APPENDIX A

COMPUTER COMPUTATIONS

The tables in this appendix show the computed regression coefficient by a least squares fit, the standard error, the t value for the coefficients plus a multiple correlation coefficient, a standard error, and F values for the overall test design. Also furnished are tables of measured and computed responces. Table A-1 shows the correspondence between variable number and the terms in the polynomial equations.

Table A-1 Correspondence
Between Variable Number and Variables

Variable No.	Term
1	\mathbf{x}^{J}
2	x ₂
3	х ₃
14	x_{l_4}
5	Yl
6	Y2
7	^Ү 3
8	x_2^2
9	x ₃ ²
10	Y ₃ 2 X ₂ 2 X ₃ 2 X ₄ 2
11	x_1x_2
12	x_1x_3
13	x_1x_4
14	x ₂ x ₃
15	$x_{2}x_{4}$
16	$x^3x^{j_1}$
17	x ₂ x ₄ x ₃ x ₄ x ₁ ²

Table A-2

Results for CO_2 Removal Rate at P_{CO_2} equal 3.8 mm Hg

SELECTION	1				
ARIABLE MEAN	STANDARD DEVIATION	CORRELATION X VS Y	REGRESSION COEFFICIENT	STD. ERROR' OF REG. COEF.	COMPUTI
<u>1</u>	0• 852 80	0-56004	0+03474	0+00693	5-01205
2	85280	0.20548	0.01274	0.00693	1.83895
3 0.00000	0.85280	0.25114	0.01168	0.00490	2.38395
40.00000	0.85280	0.21354	0.01449	0.00693	2.09136
8 0.69565	1.14553	0.09515	-0.00069	0.00373	-0.18706
9 0.69565	1.14553	-0.42875	-0.01707	0.00373	-4.57146
10 0.69565	1.14553	-0.20479	-0.01007	0.00373	-2.69721
110.00000	0.60302	0.08167	-0.00912	0.00980	-0.93063
12 0.00000	0.60302	-0.26780	-0.01762	0.00693	-2.54208
.130. <u>-00000</u>	0.60302	0.40.968.6	-0.00637	0.00980	-0.65016
.140.00000	0.60302	0.03608	0.00237	0.00693	0.34255
15 0.00000	0.60302	0.26400	-0.01737	0.00980	-1.77202
16	0.60302	-0.03988	-0-00262	0.00693	-0.37860
DEPENDENT 5 0.09173	0.03968				
			v		
NTERCEPT	0.11785	5			· · · · · · · · · · · · · · · · · · ·
MULTIPLE CORRELATIO	N 0.9545	7			
TD. ERROR OF ESTIM	ATE 0.01961	l			
	, , , , , , , , , , , , , , , , , , , ,				

				~	

	ANALYSIS OF VAR	RIANCE FOR THE	REGRESSION		
SOURCE OF VARIA		ES SUM O			VALUE
TIRIBUTABLE TO REG DEVIATION FROM REGR		0.031			.86452
TOTAL	22	0.0346			;

'-MULTIPLE R	EGRESSION	-CO2CON	
SELEC	T-I-ON		
11			

17	TABLE OF	RESIDUALS	
. U.CASE-NO.	YVALUE	YES-TIMA-TE	RESIDUAL
1	0.10000	0.10324	-0.00324
K22	0-09500	0-09824	
3	0.07700	0.08024	-0.00324
154	0.08300	0.08624	-0.00324
5	0.11600	0.11562	0.00037
.: 116		0 • 02 962	0 0003-7
7	0.09200	0.09162	0.00037
1/	0-0-38-00	0.03762	0+00037
9	0.10800	0.10656	0.00143
γs <u> </u>	0.05000	0.04856	0.00143
11	0.07800	0.07293	0.00506
J1912	0.02400	0.02618	-0.00218
13	0.14200	0.14056	0.00143
²⁰ 1 4	0.09100	0.08956	0.00143
15	0.15000	0.14856	0.00143
n16	0.01100	0.00956	0.00143
17	0.15500	0.11785	0.03714
n18	0+10800	0.11785	-0.00985
19	0.13800	0.11785	0.02014
n2.0	0+11900	0.1-1785	0.00114-
21	0.09200	0.11785	-0.02585
74 <u>22</u>	0.09700	0.11785	-0.02085
23	0.11600	0.11785	-0.00185

Table A-4 Results for Water Loss at p_{CO_2} equal 3.8 mm Hg

SELE	GTION	2				
VARIABLE	MEAN	STANDARD	CORRELATION	REGRESSION	STD. ERROR	COMPUT
NO.		DEVIATION	X VS Y	COEFFICIENT	OF REG.COEF	• T VALU
1	0.00000	0.85280	0.05486	-0.08999	0.09328	-0.96480
2	0.00000	0.85280	-0.18583	0.00249	0.09328	0.02680
3	0.00000	0.85280	-0.24600	-0.08687	0.06596	-1.31707
4	0.00000	0.85280	-0.37343	-0.14249	0.09328	-1.52761
8	0.69565	1.14553	-0.09492	-0.04180	0.05024	-0.83200
9	0.69565	1.14553	-0.56397	-0.15305	0.05024	-3.04594
10	0.69565	1.14553	0.02102	-0.01430	0.05024	-0.28473
11	0.00000	0.60302	-0.24278	0.02124	0+13192	0.16108
12	0.00000	0.60302	0.01752	0.00874	0.09328	0.09380
13	0.00000	0.60302	-0.26781	-0.13624	0.13192	-1.03281
14	0.00000	0.60302	0.00250	0.00124	0.09328	0.01340
15	0.00000	0.60302	0.25779	0.21874	0.13192	1.65818
16	0.00000	0.60302	0.02753	0.01374	0.09328	0.14740
17	0.69565	1.14553	0.13169	0.01194	0.05024	0.23765
DEPENDENI						
6	0 • 75565	0.30116				
INTERCEPI		0.8928	5			
MULTIPLE	CORRELATION	0.8490	5			
STD. ERRO	OR OF ESTIMA	IE0.2638	4			
		ANALYSIS OF VA	RIANCE FOR THE	REGRESSION		
SOURC	E OF VARIAT		EES SUM OI EEDOM SQUARE			F VALUE
	BLE TO REGR					47596
DEVIATION	FROM REGRE	SSION	8 0.556	90 0.06	961	

Table A-5

Comparison of Responses for Water carryover at \mathbf{p}_{CO_2} equal to 3.8 mm Hg

SELEC.	SELECTION 2								
	TABLE OF	RESIDUALS							
CASE NO.	Y VALUE	Y ESTIMATE	RESIDUA						
	0 • 4 1 0 0 0	- 0.50624 - 	-0 -09624						
2	0.35000	0.44624	-0.09624						
-3	0- 8-9000	····· 0 • 98624 ··	- 0-09624						
4	0.40000	0.49624	-0.09624						
. 5	0 • 5-7000	0.63249	- 0-06249						
6	0.60000	0.66249	-0.06249						
7			-0.06249						
я	0.60000	0.66249	-0.06249						
	0 -63000		0 -0793 7						
10	1.20000	1.12062	0.07937						
11	0-2-20-00	0.10687	0-1-131-2						
12	0.50000	0.45437	0.04562						
13	0.81000	0.73062	0.07937						
14	0.80000	0.72062	0.07937						
15	0.84000	0.76062	0.07937						
16	1.20000	1.12062	0.07937						
17	1.000.00	0.89285	0.10714						
18	1.00000	0.89285	0.10714						
19	1.09000	0.89285	0.19714						
20	1.00000	0.89285	0.10714						
21	0.38000	0.89285							
22	1.13000	0.89285	0.23714						
23	0.65000	0.89285							

Table A-6 Results for Power at p_{CO_2} equal 3.8 mm Hg

SELE	CTION 3					
VARIABLE NO.	MEAN	STANDARD	CORRELATION - X VS Y	REGRESSION COEFFICIENT		
1	0.00000	0.85280	-0.61218	-15.52499	1.39753	-11.10880
2	0.00000	0.85280	0.01391	-0.87499	1.39753	-0.62610
3	0.00000	0.85280	-0.05728	-0.87499	0.98820	-0.88543
4	0.00000	0.85280	-0.14076	-1.42499	1.39753	-1.01964
8	0.69565	1.14553	0.15036	-0.81428	0.75283	-1.08163
9	0.69565	1.14553	0.05192	1.26071	0.75282	1.67463
10	0.69565	1.14553	-0.05043	0.21071	0.75283	0.27989
	0.00000		-0.13310		1.97641	
			•	2.74999		1.96774
				2.17499		
				-2.22499		
15				12.34999		
_				1.15000		
				6.78571		
DEPENDENT						
7	12.83477	13.02506				,
INTERCEPT		7.65713	3			
MULTIPLE	CORRELATION	0.98311	L			
STD. ERRO	R OF ESTIMATE	3.95283	3			
		LYSIS OF VAS		REGRESSION		
SOURC	E OF VARIATION					F VALUE
		OF FRE	EDOM SQUARE	S SQUAR	ES	
	BLE TO REGRESS			10 257.66 52 15.62		49080

SELEC	TION 3		
	TABLE OF	RESIDUALS	
CASE NO.	Y VALUE	Y ESTIMATE	RESIDUAL
1	8.30000	11-14999	2.84999-
2	12.60000	15.44998	-2.84998
3	1-3 • 6 0 0 0 0	16+44998	2-84998-
4	11.00000	13.84998	-2.84997
5	7 • 1 0 0 0 0	9,54999	-2.44999
6	27.00000	29.44997	-2.44996
7	8•10000	10.54999	-2.44999
•	8 • 10000 ·		
•			
8	11-+90000	14,34997	2-44997
9 -10 11	8.30000 14.00000 14.00000	14.34997 5.64999 11.34999 10.94998	2.44997 2.65000 2.65001 3.05001
9 10 11 12	8.30000 14.00000 14.00000	14.34997 5.64999 11.34999 10.94998	2.44997 2.65000 2.65001 3.05001 2.25001
9 10 11 12	14.0000 14.0000 14.0000 16.79000 5.30000	14.34997 5.64999 11.34999 10.94998 	2.44997 2.65000 2.65001 3.05001 2.25001 2.65000
9 10 11 12	14.0000 14.0000 14.0000 16.7000 5.3000	14.3499.7 5.64999 11.34999 10.94998 14.44998 2.64999	2.44997 2.65000 2.65001 3.05001 2.25001 2.65000 2.65000
9 10 11 -12 13 -14	14.90000 14.00000 14.00000 5.30000 8.80000 6.40000	14.34997 5.64999 11.34999 10.94998 14.44998 2.64999 6.14999 3.74999	2.44997 2.65000 2.65001 3.05001 2.25001 2.65000 2.65000 2.65000
9 10 11 12 13 14 15	11.90000 8.30000 14.00000 14.00000 5.30000 8.80000 6.40000	14.34997 5.64999 11.34999 10.94998 14.44998 2.64999 6.14999 3.74999 5.84997	2.44997 2.65000 2.65001 3.05001 2.25001 2.65000 2.65000 2.65000
9 10 11 12 13 14 15 16	11.90000 8.30000 14.00000 14.00000 16.70000 5.30000 8.80000 6.40000 68.50001 5.50000	14.34997 5.64999 11.34999 10.94998 14.44998 2.64999 6.14999 3.74999 65.84997 7.65713	2.44997 2.65000 2.65001 3.05001 2.65000 2.65000 2.65000 2.65000 2.65000
9 10 11 12 13 -14 15 16 17	8.30000 14.00000 14.00000 16.70000 5.30000 8.80000 6.40000 68.50001 5.50000	14.34997 5.64999 11.34999 10.94998 14.44998 2.64999 6.14999 3.74999 7.65713	2.44997 2.65000 3.05001 2.65000 2.65000 2.65000 2.65000 2.65000 2.65004 2.15713
9 10 11 -12 13 -14 15 16 17 18	8.30000 14.00000 14.00000 14.00000 5.30000 8.80000 6.40000 6.50000 8.30000 8.30000 6.50000	14.34997 5.64999 11.34999 10.94998 -14.44998 2.64999 6.14999 3.74999 5.84997 7.65713 7.65713	2.44997 2.65000 3.05001 2.65000 2.65000 2.65000 2.65000 2.65000 2.65000 -2.15713
9 10 11 12 13 14 15 16 17 18	11.90000 8.30000 14.00000 14.00000 5.30000 8.80000 6.40000 68.50001 5.50000 8.30000 6.50000	14.34997 5.64999 11.34999 10.94998 14.44998 2.64999 6.14999 3.74999 5.84997 7.65713 7.65713 7.65713	-2.44997 2.65000 2.65001 3.05001 2.65000 2.65000 2.65000 2.65004 -2.15713 -0.64286 -1.15713
8 9 10 11 12 13 14 15 16 17 18 19	8.30000 14.00000 14.00000 14.00000 5.30000 8.80000 6.40000 6.50000 8.30000 8.30000 6.50000	14.34997 5.64999 11.34999 10.94998 -14.44998 2.64999 6.14999 3.74999 5.84997 7.65713 7.65713	2.65001 3.05001 2.25001 2.65000 2.65000 2.65000 2.65000 -2.15713

Table A-8

Results for ${\rm CO_2}$ Removal Rate at ${\rm p_{CO_2}}$ equal 7.6 mm Hg

65.5	CT.LON.		1			
	CTIONeres 1					AUL A MONTH MAN AND AND AND AND AND AND AND AND AND A
VARIABLE NO:	MEAN	STANDARD DEVIATION	CORRELATION	REGRESSION COEFFICIENT	STD• ERROR OF KEG∗COEF 1	COMPUTE T VALUE
•	+)- - 600000					
						0-64767-
	U *00()00	() s 8 9 4 4 2	0.22074	-0.01566	0-01359	1.15964
			- 02-08-76			
	0.77419	799027	ີ້ດ. 1.35 45	~~იათა42~~	01237	~~~0.63076
9	0.77419	0.99027	- 0∗17884	-0.00944	0.01237	-0.76348
61	~~0:774T9~~~	~~~~ T\$ 97727	0.17941	C•0109Z	0.01237	0.68275
11		73027	v.17137		0.01654	
12	0.00000	J.73029	-0.14156	-C.01187	C.01654	-0.71768
13		73029	0.70117	0.01687	0.01654	1-01987
14t		73029	03·UU745			0. 03777
·····1-5						0.11331
16		·			0101 65 4	<u>i-095</u> 42-
17	0-77419	······································	- ()=()2938			-0.07670 -
	Plant Charles 19 - No Share Michigan Co. (1998) 19	· · · · · · · · · · · · · · · · · · ·				
DEPENDENT	T			er e e e e e e e e e e e e e e e e e e		
5	0.17264	0.06125				
And the second second						
INTERCEPT	1	0.1657	1			
MOUTTPLE	CORRELATION	C:6143	5			
STD. ERRO	OR OF ESTIMAT	E 0.0661	8 ,	enante e primete, in disc. He distribution de particular de la companya del companya de la companya del companya de la company	Secretary Additional Action (Secretary Additional Addit	
			RIANCE FOR THE	REGRESSION		
SOURC	CE OF VARIATI	ON DEGR				VALUE
	ABLE TO REGRE					69286
DEVIATION	T FROM REGRES	510.1	6 0.0700	0.00		

	TABLE OF F	RESIDUALS	
		V	
Case-No 1	Y-VALUE	YESTIMATE 0.23733	0.0626
-	0.30000	0.23733 0:16691	0 -0230
	0-19000	0.18608	0.0739
3	0.26000		
4	0.21000	0.17316	0.0368
5	0.33000	0.25491	0.0750
	0-1-7000	73699	0:033 0
7	0.22000	0.20616	0.0138
	0.14000	0.14974	
9	0.20000	0.13608	0.0639
10	0.16000	0.13316	0.0268
11	0.10000	0.09233	0.0076
72	0.13000	0:14691	-0.0169
13	0.23000	0.22616	0.0038
74	0.16000	0.17574	-0.0157
15	0.22000	0.18491	0.0350
16	0.17000	0.19199	-0.0219
17	0.07500	0.19358	-0.1185
T8	0.15000	0.13024	0.0197
19	0.13000	0.21691	-0.0869
	0.17000	0.18191	-0.0119
21	0.00700	0.09658	-0.0895
22	0.12000	0.15924	-0.0092
23	0.13000	0.23691	-0.1069
 24	<u>0.13000</u>	0.18191	0.0080
25	0.20000	0.16571	0.0342
26	0-1700 0	0.16571	0.0042
27	0.18000	0.16571	0.0142
28	0.17000	0.16571	0.0042
29	0.13000	0.16571	-0.0357
30	0.16000	0.16571	-0.0057
37	03-15000	0-16571	

Table A-10

Results for Water Loss at p_{CO_2} equal 7.6 mm Hg

SELE	CTION 2					
VARIABLE	MEAN	STANDARD DEVIATION	CORRELATION X VS Y	REGRESSION COEFFICIENT	STD. ERROR OF REG.COEF.	COMPUT T VALU
1	-0:00000	0.89442	0:33393	0-07291	0 = 04298	1.71227
2	-0.00000	-0.89442	=0=07442	0-01624	0104258	-0.38159
3	0+00000	0 • 8 9 4 4 2	-0.09731	-0.02124	0+04258	<u>=0.49900</u>
4	0-00000	0.89442	0+05533		0 -04258	-0.28374
8	0.77419	0:99027	0-01851	0-01581	0:03901	0740546
9	0.77419	0.99027	-0.32874	-0.07206	0:03901	-1.84729
10	-0.7741 9	0.99027	0+01995		0103901	0-24526
11	000000	0.73029	0-02570	0-00687	0.05215	0.13181
12	0.00000	0.73029	0.07244	0.01937	0.09215	0.37148
13	0-000000	0.73029	-0.09114	-0.02437	0.05215	-0.46735
14	-0.00000	0.73029	0+17050	- 0.04562	0.05215	-0.87478
15	0.00000	0.73029	0.15191	0.04062	0:05215	0.77892
16		0.73029		-0.01562	0 -05215	0-29958
17	777419	-0.99027	-0.24601	-0.05706	0-03901	1:46280
DEPENDENT						
6	0.57322	0.19530				
INTERCEPT		0.69285				
MULTIPLE	CORRELATION	0 • 62564				
STD. ERRO	R OF ESTIMATE	0 • 20862	******	,		
			· · · · · · · · · · · · · · · · · · ·			
				;		
				• :		
	ANA	LYSIS OF VARI	ANCE FOR THE	REGRESSION		1
SOURC	E OF VARIATION	DEGREE	S SUM O	F MEAN S SQUAR	FES F	VALUE
	BLE TO REGRESS		0.447 0.696			73509
TOTAL		30	1.1442	_		

Table A-ll Comparison of Responses for Water Loss at p_{CO_2} equal 7.6 mm Hg

	TABLE OF	RESIDUALS	······································
CASE NO.	Y-VALUE	Y-ESTIMATE	RESIDUA
1	0.32000	0.48249	-0.16249
2	0:61000	0 -6 5 208	- 0+04208
3	0.50000	0.47374	0.02625
4	0.70000	0.61583	0.08416
5	0.48000	0.52374	-0.04374
6	0 <u>-96000</u>	77083	0:1 8 9 16
7 .	0.43000	0.33249	0.09750
8	0.260 00	0 -55208	0:29208
9	0.67000	0.45708	0.21291
10	0.41000	0.52916	-0.11916
` 11	0.40000	0.61083	-0.21083
12	0.62000	0.69541	- 0=03541
13	0.33000	0.43583	-0.10583
1-4	0-48000	0-58541	-0 - 105 41
15	0.37000	0.40708	-0.03708
16	0.67000	0.52916	0.14083
17	0.38000	0.31874	0.06125
18	0:65000	0-61041	0+0 395 8
19	0.70000	0.66208	0.03791
20	0.66000	0.59708	0-06291
21	0.52000	0.44708	0.07291
22	0.39000	0.36208	0.02791
23	0.70000	0.67874	0.02125
24	00017.0	0.63041	0.07958
25	0.24000	0.69285	-0.45285
26	0.61000	0.69285	-0.08285
27	0.85000	0.69285	0.15714
28	0.65000	0.69285	-0.04285
29	0.90000	0.69285	0.20714
30	0.96000	0.69285	0.26714
31	0.64000	0.69285	-0.05285

Table A-12 Results for Power at p_{CO_2} equal 7.6 mm Hg

VARIABLE NO.	MEAN	STANDARD DEVIATION	CORRELATION X VS Y	REGRESSION COEFFICIENT	STD. ERROR OF REG.COEF.	COMPUTI T VALUI
1	0.00000	0.89442	0.02265	0.24166	1.79145	0.13489
2	0.00000	0.89442	0.03749	0.39999	1.79145	0.22328
3	0.00000	0.89442	-0.37654	-4.01666	1.79145	-2.24212
4	0.00000	0.89442	0.03437	0.36666	1.79145	0.20467
8	0.77419	0.99027	-0.14628	-1.12113	1.64119	-0.68311
9	0.77419	0.99027	0.59459	5•44136	1.64119	3.31548
10	0.77419	0.99027	-0.15334	-1.18363	1.64119	-0.72119
11	0.00000	0.73029	-0.05358	-0.69999	2•19407	-0.31904
12	0.00000	0.73029	0.08132	1.06249	2.19407	0.48425
13	0.00000	0.73029	-0.05453	-0.71249	2.19407	-0.32473
14	0.00000	0.73029	-0.02104 -	- 0•27499	2.19407	-0.12533
15	0.00000	0.73029	0.04592	0.59999	2 • 19407	0.27346
16	0.00000	0.73029	-0.06410	-0.83749	2.19407	-0.38170
17	0.77419	0.99027	-0.12935	-0.97113	1.64119	-0.59172
DEPENDER		9 -54090				
INTERCEF)†	5=1428	5			
MULTIPLE	CORRELATION	7407	B			
-STD*-ERF	OR OF ESTIMA	TE8•7762	·			
		ANALYSIS OF VA	RIANCE FOR THE	REGRESSION		
SOUR	RCE OF VARIAT	ION DEGRE				VALUE
ATTRIBUT	ABLE TO REGR	ESSIUNT	4 1498.491	45 107.03	509	38964

Table A-13

Comparison of Responses for Power at $\mathbf{p}_{\mathrm{CO}_2}$ equal 7.6 mm Hg

MULTIPLE R	EGRESSION	• CO2·CON	
, SELEC	TION 3		
	TABLE OF	RESIDUALS	
9	I ADLE OF	RESIDUALS	
CASE NO.	Y VALUE	Y ESTIMATE	RESIDUAL
·*1	2.00000	9.45415	-7.45415
2	3.80000	10.63748	- 6•83748
"3	2.50000	11.00415	-8:50415
<u>.</u> 4	3.20000	9.38748	-6.18748
"———	2.90000	1.52082	1.37917
6	6.10000	6.95415	-0.85415
¹³ 7	3 40000	1.97082	1.42917
8	7.30000	4.60415	2.69584
149	3:60000	12-08747	
10	4.10000	10.42081	-6.32081
"	12.00000	16.03747	-4.03747
12	4.40000	11.57081	-7.17081
13	2.10000	0.80415	T.29584
14	6.10000	3.38748	2.71251
1/	4.70000	3.65415	T.04584
16	6.00000	3.43749	2.56251
" 17	7.10000	0.77499	6.32500
18	6.10000	1.74166	4.35833
19	6.80000	-0.14166	6.94166
20	5.20000	1.45833	3.74166
"2T	57.10000	34.94164	22.15836
22	7 • 40000	18.87497	-11.47497
71 23	6.50000	-0.32499	6.82499
24	5.00000	1.14166	3.85833
25	4.50000	5.14285	
26	3.50000	5.14285	-1.64285
27	5.000000	5.14285	0-14285
28	5.60000	5.14285	0.45714
29	6 6 6 0 0 0 0	5.14285	1.45714
30	5.10000	5.14285	-0.04285
B31	5-70000	5-14285	0-55714

Table A-14

Reduced Equation for ${\rm CO_2}$ Removal Rate at ${\rm p_{CO_2}}$ equal 3.8 mm Hg

XEQREG	SRE					
```						
MULTIPLE !	REGRESSION.	•••CO2CON				
SELEC	TION					
VARIABLE NO.	MEAN	STANDARD DEVIATION	CORRELATION X VS Y	REGRESSION COEFFICIENT	STD. ERROR OF REG.COEF.	COMPUTE T VALUE
<u>1</u>	0.00000	0.85280	0.56004	0.02606	0.00556	4.68081
3	0.00000	0.85280	0.25114	0.01168	0.00556	2.09907
9	0.69565	1.14553	-0.42875	-0.01697	0.00420	-4.04129
10	0.69565	1.14553	-0.20479	-0.00997	0.00420	-2.37496
12	0.00000	0.60302	-0.26780	-0.01762	0.00787	-2.23830
17	0.69565	1.14553	-0.19279	-0.00960	0.00420	-2.28570
DEPENDENT						
5	0.09173	0.03968				
INTERCEPT		0.11716	***************			
MULTIPLE (	ORRELATION	0.87804				
STD. ERROF	R OF ESTIMA	TE 0.02227				· · · · · · · · · · · · · · · · · · ·
		ANALYSIS OF VAR	IANCE FOR THE	REGRESSION		
SOURCE	OF VARIAT	ION DEGRE				VALUE
	LE TO REGRI		0.026			97588
TOTAL		22	0.0346			
		~~~~~~				

Table A-15

## Comparison of Responses for CO Removal Rate for Reduced Equation at $\rm p_{\rm CO_2}$ equal 3.8 mm Hg

SELEC	TION 1		
	TABLE OF	RESIDUALS	
CASE NO.	Y_ VALUE	Y_ESTIMATE	RESIDUAL
1	0.10000	0.10073	-0.00073
2	0.09500	0.08386	0.01113
3	0.07700	0.10073	-0.02373
4	0.08300	0.08386	-0.00086
5	0.11600	0.11261	0.00338
6	0.03000	0.02523	0.00476
7	0.09200	0.11261	-0.02061
8	0.03800	0.02523	0.01276
9	0.10800	0.07726	0.03073
10	0.05000	0.07726	-0.02726
11	0.07800	0.07263	0.00536
12	0.02400	0.02588	-0.00188
13	0.14200	0.11716	0.02483
14	0.09100	0.11716	-0.02616
15	0.15000	0.13088	0.01911
16	0.01100	0.02663	-0.01563.
17	0.15500	0.11716	0.03783
18	0.10800	0.11716	-0.00916
19	0.13800	0.11716	0.02083
20	0.11900	0.11716	0.00183
21	0.09200	0.11716	-0.02516
22	0.09700	0.11716	-0.02016
23	0.11600	0.11716	-0.00116

## Table A-16

## Results for Reduced Equation for Water Loss at $p_{CO_2}$ equal 3.8 mm Hg

MULTIPLE	REGRESSION	CO2CON				
	ECTION 2		~~~~~			
	,					
NO.	MEAN	STANDARD DEVIATION	COHRELATION X VS Y		NSTD+-ERROH NT OF REG.COB	
4	0.00000	0.85280	-0.37343	-0.13187	0.05816	-2.26742
	0.69565	1.14553	-0.56397	-0.14826	0.04329	-3.42434
" DEPENDEN	Traceron and the contract of t				A STATE OF A STEEL STATE OF THE	2041-20-0-3-001-1400
4	0-75565					
	Ţ					
	CORRELATION	0.67639			e Marie Marie de las	
STDERR	OR OF ESTIMATE	0•23264	******	ни <del>н</del> четы ка ^д ы сишыны, симп	e de terre de la companya de la comp	
	and and the second seco	ngingkataganga antotéléksik disebbe yan e - e sa i	or de to de Pier i Minimum adam con Shill Mountail annish.	v skilled skillinger staffered medicinetherwisels. Amelian	eros 1965 a 1966 kayan ing sangkaran milikaka kabangan ing pinjipaka asarah sayan	orana dipuntationi manafarano tampunu administrati
1					*************	
1	~ ~		********			
1		******	*******			
	ANAL	.+5-1-5OF <del>VAR</del>	FANCE-FOR-THE	461-2 <del>2</del> 34934		
SOUR	CE OF VARIATION			<del>OF M</del> ₹ES SQ		FVALUE
ATTRIBUT DEVIATIO	ABLE TO REGRESSION FROM REGRESSIO					8.43366
	CONTRACTOR OF THE PROPERTY OF					

Table A-17

Comparison of Responses for Water Loss for Reduced Equation at  $\mathbf{p}_{\mathrm{CO}_2}$  equal 3.8 mm Hg

SELEC	TION 2		
	TABLE OF	RESIDUALS	
CASE NO.	Y VALUE	Y ESTIMATE	RESIDUAL
1	0:41000	<del>0-57865</del>	<del>-0-16</del> 865
2	0.35000	0.84240	-0.49240
			0+04759
4	0.40000	0.57865	-0.17865
	<del>0+57000</del>	0.57865	-0.00865
6	0.60000	0.84240	-0.24240
7	<del>1-+1-1</del> 000		0-2-67-59
8	0.60000	0.57865	0.02134
	0 • 6-30-00	059504	0 • 03495
10	1.20000	1.12254	0.07745
ana and describe	0+22000	0.26572	-0.04572
12	0.50000	. 0.26572	0.23427
13	0.81000	0-85879	0.04879
14	0.80000	0.85879	-0.05879
15	0-84000	0-85879	0.01879-
16	1.20000	0.85879	0.34120
			0.14120
18	1.00000	0.85879	0.14120
			0+23120
20	1.00000	0.85879	0.14120
	0+38000	0.85879	
22	1.13000	0.85879	0.27120
		0.85879	

Table A-18 Results for Reduced Equation for Power at  $\mathbf{p}_{\mathrm{CO}_2}$  equal to 3.8 mm Hg

SELE	ECTION 3						
							*****
,						·	
						***************	
VARIABLE	MEAN	STANDARD DEVIATIO		RRELATION X VS Y	REGRESSION COEFFICIEN		COMPUTE T VALUE
1	0.00000	0.85280	<del>-</del> 0	0.61218	-15.52499	1.66612	-9.31802
15	0.00000	0.60302		14699	12.34999	2.35625	5.24136
17	0.69565	1.14553		0.59052	6.71445	0.87706	7.65558
DEPENDENT	T				_		
7	12.83477	13.02506					
INTERCEP	T	8.1	6384				
MULTIPLE	CORRELATION	0.09	4177				
STD. ERRO	OR OF ESTIMATI	E 4.7	1251				
		*******					· · · · · · · · · · · · · · · · · · ·
	Ä	VALYSIS OF	VARTANO	E FOR THE	REGRESSION		
SOUR	CE OF VARIATIO		EGREES FREEDOM	SUM C		AN ARES	F VALUE
	ABLE TO REGRES		3	3310.401	37 1103.	46704 49	•68825
DEVIATION	N FROM REGRES	SION	19	421.948	30 22.	20780	
TOTAL	_		22	3732.3496	1		<u> </u>

Table A-19

## Comparison of Responses for Power for Reduced Equation at $\mathbf{p}_{\text{CO}_2}$ equal 3.8 mm Hg

			to the strong and an own recommendation of the section of the sect
MULTIPLE !	REGRESSION	••C02C0N	
	THE PERSON WILL AND AND AND A CONTRACT OF	and appropriate the control of the control of the description of the control of t	an entre transfer and entre the entre transfer and the transfer and the entre transfer and
SELE	CTION 3	· · · · · · · · · · · · · · · · · · ·	mer war and and it with their work five cent did not det dan milk from et no men web.
		to map to the to the to making against	ar and or
	TABLE OF	RESIDUALS	
A. WAR DE MARK TO A	Control of the particular of t	THE RESERVE THE PROPERTY OF TH	e de la composiçõe de l
CASE NO.	Y VALUE	Y ESTIMATE	RESIDUAL
1	8.30000	11.70330	-3.40330
2	12.60000	18.05330	-5.45330
3	13.60000	11.70330	1.89669
4	11.00000	18.05330	-7.05330
5	7.10000	11.70330	-4.60330
6	27.00000	18.05330	8.94669
7	8.10000	11.70330	-3.60330
8	11.90000	18:05330	-6.15330
9	8.30000	8.16384	0.13615
10	14.00000	8.16384	5.83615
11	14.00000	8.16384	5.83615
		to see the control of the see that the see the see the see	n in each an entrien was earliest earliest and earlier in the barrier.
			r reconstruction of the control of t
12	16.70000	8.16384	8.53615
13	5.30000	8.16384	-2.86384
14	8.80000	8.16384	0.63615
15	6.40000	3.97168	2.42831
16	63.50001	66.07167	2.42834
17	5.50000	8.16384	-2.66384
18	8.30000	8.16384	0.13615
19	6.50000	8.16384	-1.66384
20	6.70000	8.16384	-1.46384
21	8.70000	8.16384	0.53615
22	9.30000	8.16384	1.13615
23	8.60000	8.16384	0.43615

APPENDIX B

INSTRUMENTATION

AND

EQUIPMENT

## INSTRUMENTATION AND EQUIPMENT

The following instrumentation and equipment was used to control, read, and record the various parameters encountered in the program.

## B.1 Temperature

Type T (Copper-Constantan) thermocouples were used for all temperature measurement except for the four dial thermocouples which are built into the GAT-O-SORB system for measuring the temperature of the liquid entering and exiting each of the two absorbent beds. The thermocouples sensing the temperature of the gas at the inlet of the fan in the GAT-O-SORB system, and the temperature of the gas leaving the absorbent bed were read out and recorded on a Bristol Dynamaster multipoint recorder (range -50° to +150°F). Other thermocouples which sensed the temperature inside of the absorbent beds, temperature of the chamber, and temperature of the coolant at the inlet connection to the GAT-O-SORB system were read out and recorded on a Daystrom-Weston model 6702 multipoint recorder (range 0-300°F). The temperature of the gas entering the GAT-O-SORB system was controlled at 50°F by passing chamber air through a gas-liquid heat exchanger. The air entering the heat exchanger varied from  $65^{\circ}$ to 80°F. The temperature of the gas leaving the heat exchanger was controlled by the temperature of the glycol-water solution which passed through the liquid side. This liquid was recycled through a refrigeration unit outside of the chamber.

The temperature of the water flowing to the absorbing bedds internal heat exchanger was 50°F. This liquid left the absorbing bed and was heated with an electric cartridge heater to 180°F and flowed to the bed being regenerated. A Fenwal thermostatic switch turned the electric heater on or off.

### B.2 Dew Point

The dew point of the gas entering or exiting the GAT-O-SORB system was sensed with a Cambridge Systems Model 992-Cl hygrometer. This sensor has a type T thermocouple output which was read out and recorded on the same Bristol recorder used for recording temperatures. A three way solenoid valve was used to control the sample point, i.e., inlet gas or outlet gas. The dew point of the gas entering the GAT-O-SORB system was controlled by passing chamber gas through a gas-liquid heat exchanger to condense excess moisture and lower the dew point to 45°. The temperature of the liquid flowing through the heat exchanger controlled both the dew point and the temperature of the gas leaving the heat exchanger.

## B.3 Vacuum for Regeneration

A Precision Scientific Model 150 vacuum pump (5.3 cfm free air) was used to evacuate the bed in the regeneration mode. A mercury manometer indicated the absolute pressure of the regenerating bed and a Matheson Lab-Stat controller was used to open or close a solenoid valve in the line between the vacuum pump and the chamber. This controller has a dielectric sensor attached to the mercury manometer. Thus changes in the level of mercury were transmitted to the controller. Also two dry ice-acetone traps were placed in series in the vacuum line between the solenoid valve and the chamber. These traps prevented moisture from reaching the vacuum pump and provided a method of measuring the amount of moisture lost from the sorbent during regeneration.

### B.4 Chamber Pressure

After the chamber was evacuated to the specified operating pressure of 360 mm Hg, the pressure was maintained at this level with a trim pump that

corrected for in-leakage. Generally in-leakage ranged from 20 to 30 scfh. The trim pump used was a Speedaire model 1Z943 (free air 1.9 cfm). A Barksdale Model DlH-H18 Pressure-Vacuum switch was used to open or close a solenoid valve in the line between the trim pump and chamber. A Sprague model 175 gas meter was used to measure the amount of gas that the trim pump removed from the chamber. Therefore the amount of CO₂ removed could be calculated.

The pressure within the chamber was readout on a Wallace-Tiernan absolute pressure gauge, model FA 160 (range 0-800 mm Hg).

## B.5 <u>Carbon Dioxide Concentration</u>

The concentration of carbon dioxide within the chamber and fed to the GAT-O-SORB system, and the concentration of carbon dioxide leaving the GAT-O-SORB system which indicates how efficiently the absorbent performs, were measured with MSA LIRA infrared analyzers (Model 300).

The signal from the LIRA which measured chamber  ${\rm CO_2}$  concentration was sent to a Leeds/Northrup model "H" AZAR recording controller. When the  ${\rm CO_2}$  concentration fell below the set-point, the controller opened a solenoid valve between the  ${\rm CO_2}$  supply and the chamber.

The signal from the LIRA which measured the  ${\rm CO}_2$  concentration at the exit of the GAT-O-SORB system was sent to a Bausch and Lomb strip chart recorder.

## B.6 Carbon Dioxide Gas

The purity of the carbon dioxide fed to the chamber was 99.5 percent. The amount of  $\mathrm{CO}_2$  used was measured with a wet test meter which was presaturated with  $\mathrm{CO}_2$  to prevent errors due to  $\mathrm{CO}_2$  absorption in the water within the meter.

#### B.7 Power

All electrical power for the GAT-O-SORB system was measured with a watt-hour meter. Also a ammeter was used to indicate periods of peak power demand GENERAL AMERICAN RESEARCH DIVISION

when the water heater was turned on. The ammeter also indicated the proper functioning, based on current output, of electrical components such as the blower and the heater.

## B.8 Gas Flow

The amount of air which is blown through the absorbing bed was measured with a Sprague model 1000 gas meter that was placed inside the test chamber. Thus measured flows are at chamber pressure rather than standard conditions.

## B.9 Coolant Flow

A Dwyer rotameter and a needle valve were used to read and control water flowing to the heat exchangers in the absorbent canisters. The calibration also was checked during each run with a graduated cylinder and stop-watch.

APPENDIX C

EXPERIMENTAL TEST PLAN

The Box-Wilson central composite design was the test plan specified for the experimental evaluation of the GAT-O-SORB system. The composite design consists of a factorial design which yields only linear relationships plus additional tests for the determination of second order effects.

In a central composite design a point exists at the center of the factorial design and "2K" addition tests for determination of second order effects (called star points) are symmetrically located around the center point where K equals the number of independent variables.

A non-central composite design is used only if the results of the factorial design suggest that a point of maximum is closer to one factor combination than it is to others. In this case K extra points will be tested around the factorial point suspected to be near a maximum point.

The central composite design yields the regression coefficients for a quadratic polynomial expression. Additional tests are run at the center point of the design so that the standard error can be determined and is uniformly distributed between all test points.

#### C.l Designs Used

The GAT-O-SORB system was operated under two design test plans. The first was with a fixed CO₂ partial pressure of 7.6 mm Hg. Under these conditions, the composite design was made up of a 16-test full two level factorial for 4 variables, plus 8 star points, and 7 center points for a total of 31 tests.

The second test plan was run with a fixed CO₂ partial pressure of 3.8 mm Hg. The composite design consisted of 8 tests for a 1/2 replicate two level factorial design for 4 variables plus 8 star points, and 7 center points for a total of 23 tests.

### C.2 Method of Data Analysis

The relationship between the independent variables and the responses is

determined as a polynomial in the form

$$Y = B_0 + B_1 X_1 + B_2 X_2 + B_3 X_3 + B_4 X_4 + B_{11} X_1^2 + B_{22} X_2^2 + B_{33} X_3^2 + B_{44} X_{4}^2 + B_{12} X_{12} X_{2} + B_{13} X_{12} X_{3}^2 + B_{14} X_{14}^2 + B_{23} X_{2} X_{3}^2 + B_{24} X_{2} X_{4}^2 + B_{34} X_{3}^2 X_{4}^2$$

The quantity Y is the performance characteristic of the system such as  ${\rm CO}_2$  removal rate; the "B" s are the coefficients which are to be determined and the X's are the independent variables of cycle time, precool time, flow, or air flow. Only first and second order terms are considered significant. Higher order terms are neglected. The coefficients are determined by fitting the data to a multiple linear regression.

First the independent variables are put in a "coded" form. The advantage of putting the dependent variables in coded form is that the equations are easier to work with because only plus or minus integers and zero are used for independent variables.

The following coding equations were used in this program:

$$X_1 = \frac{A-30}{10}$$

where  $X_1$  is the coded value for cycle time, and A is the measured cycle time in minutes, 30 is the cycle time in minutes at the center of the design, and 10 is the difference between levels of cycle time.

$$X_2 = \frac{B-3.0}{1.5}$$

where  $X_2$  is the coded value for precool time, and B is the measure precool time in minutes 3.0 is the precool time at the center of the design, and 1.5 is the difference between levels of precool time

$$x_3 = \frac{C-3}{1}$$

where  $X_3$  is the coded value for water flow, and C is the measured water flow in gal per hour, 3 is the water flow at the center of the design, and 1 is the difference between levels of water flow,

$$X_{14} = \frac{D-10}{2}$$

where  $X_{l_{\downarrow}}$  is the coded value for air flow, and D is the measured air flow in cfm, 10 is the air flow at the center of the design and 2 is the difference between levels of air flow. The coded values of the independent variables are summarized in Table 3.

TABLE C-1. CODED VALUES FOR INDEPENDENT VARIABLES

Coded Value	+2	+1	0	-1	2
Cycle Time, minutes	50	40	30	20	10
Precool Time, minutes	6.0	4.5	3.0	1.5	0
Water Flow, gph	5	14	3	2	1
Air Flow, cfm	14	12	10	8	6

The matrix of coded X values and the corresponding Y vectors which are the measured responses are listed in Tables C-2 and C-3 for the corresponding test plans. Then least squares estimates of the coefficients are chosen so as to minimize the sum of squares of deviations between the data points and the estimated response surface.

These least squares estimates can be derived by (1) solving simultaneous normal equations, (2) by use of matrix algebra in which a matrix for the normal equations, the vectors, and an inverse matrix are calculated or (3) by using a digital computer.

A computer solution was used for this program to minimize the time required to utilize test data. In addition the computer program furnished estimates of standard error, t values of the significance of each coefficient, and a comparison of the estimated and measured responses.

# C.3 Test Program at $p_{CO_2} = 7.6 \text{ mm Hg}$

The central composite design for tests run at  $p_{CO_2}$  equal to 7.6 mm Hg is summarized in the array in Table C-2. This table shows the coded values of the independent variables and the measured responses of the three dependent variables. The  $X_O$  column always has the value (+1) and is used to determine the constant of the regression equation.

# C.4 Test Program at $P_{CO_2} = 3.8 \text{ mm Hg.}$

The central composite design for tests run at  $p_{\text{CO}_2}$  equal to 3.8 mm Hg is summarized in the array in Table C-3. This table shows the coded values for the independent variables and the measured response for the dependent variables.

		X ARRAY CODED SCALE				Y RESPONSES			
Test No	$\mathbf{x}_{o}$	$x_1$	$x_2$	x ₃	$x_{\underline{\iota}_{\!\scriptscriptstyle 4}}$	Y	Y2	^Y 3	
MO		Cycle Time Min.	PrecooleTime	Coolant Flow gph	Air Flow cfm	CO ₂ Rate 1b/hr	H ₂ O Loss lbH ₂ O/lbCO ₂	Power kwhr/lbCO ₂	
1	+1	-1	-1	-1.	-1	0.30	0.32	2.0	
2.	+1	+1	-1	-1	-1	0.19	0.61	3.8	
3	+1	<b>-</b> 1	+1	-1	-1	0.26	0.50	2.5	
14	+1	+1.	+1	-1	-1	0.21	0.70	3.2	
7	+1	<b>-</b> 1	-1	+1	-1	0.33	0.48	2.9	
9	+1	+1	-1	+1	-1	0.17	ი.96	6.1	
8	+1	<b>-</b> 1	+1	+1	-1	0.20	0.43	3.4	
10	+1	+1	+1	+1	-1	0.14	0.26	7.3	
5	+1	<b>-</b> 1	-1	-1	+1	0.20	0.67	3 <b>.</b> 6	
14	+1	+1	-1	-1	+1	0.16	0.41	4.1	
12	+1	<del>-</del> 1	+1	-1	+1	0.10	0.40	12.0	
15	+1	+1	+1	-1	+1	0.13	0.62	4.4	
13	+1	-1	-1	+1	+1	0.23	0.33	2.1	
16	+1	+1	-1	+1	+1	0.16	0.48	6.1	
17	+1	-1	+1	+1	+1:	0.22	0.37	4.7	
19	+1	+1	+1	+1	+1	0.17	0.67	6.0	
23	+1	<b>-</b> 2	0	0	0	0.075	0.38	7.1	
22	+1	+2	.0	0	0	0.15	0.65	6.1	
24	+1	0	<b>-</b> 2	0	0	0.13	0.70	6.8	
25	+1	0	+2	0	0	0.17	0.66	5.2	
26	+1	0	0	<b>-</b> 2	0	0.007	0.52	57.1	
27	+1	0	0	+2	0	0.15	0.39	7.4	
30	+1	0	0	0	-2	0.13	0.70	6.5	
32	+1	0	0	0	+2	0.19	0.71	5.0	
11	+1	0	0	0	0	0.20	0.24	4.5	
20	+1	0	0	0	0	0.17	0.61	3.5	
28	+1	0	0	0	0	0.18	0.85	5.0	
29	+1	0	0	0	0	0.17	0.65	5.6	
36	+1	0	0	0	0	0.13	0.90	6.6	
37	+1	0	0	0	0	0.11	0.96	5.1	
46	+1	0	0	0	0	0.15	0.64	5.7	

## GENERAL AMERICAN RESEARCH DIVISION

TABLE C-3 CENTRAL COMPOSITE DESIGN for Tests at  $p_{CO_2} = 3.8 \text{ mm Hg}$ 

		X ARRAY CODED SCALE			Y RESPONSES			
Test No	x _o	x	x ₂	x ₃	$x_{l_{4}}$	Yl	¥ ₂	^ч 3
		Cycle Time Min.	Precool Time Min.	Coolant Flow gph	Air Flow cfm	CO ₂ Rate lb/hr	H ₂ 0 Loss 1bH ₂ 0/1bCO ₂	Power kwhr/lbCO ₂
62	+1	+1	+1	+1	+1	0.100	0.41	8.3
68	+1	-1	+1	+1	-1	0.095	0.35	12.6
66	+1	+1	-1	+1	-1	0.077	0.89	13.6
64	+1	-1	-1	+1	+1	0.083	0.40	11.0
63	+1	+1	+1	-1	+1.	0.116	0.57	7.1
77	+1	-1	+1	-1	-1	0.030	0.60	27.0
67	+1	+1	-1	~1	-1	0.092	1.11	8.1
65	+1	-1	-1	-1	+1	0.038	0.60	11.9
71	+1.	0	. 0	:"0	+2	0.108	0.63	8.3
72	+1	0	0	0	<b>-</b> 2	0.050	1.20	14.0
56	+1	0	0	+2	0	0.078	0.22	14.0
74	+1	0	0	-2	0	0.024	0.50	16.7
54	+1	0	+2	0	0	0.142	0.81	5.3
55	+1.	0	-2	0	0	0.091	0.80	8.8
59	+1	+2	0	0	0	0.150	0.84	6.4
75	+1	-2	0	0	0	0.011	1.20	68.5
53	+1	0	0	0	0	0.155	1.00	5.5
57	+1.	· O	0	0	0	0.108	1.00	8.3
61	+1	0	0	0	0	0.138	1.09	6.5
70	+1	0	0	0	0	0.119	1.00	6.7
73	+1	0	0	0	0	0.092	0.38	8.7
76	+1	0	0	0	0	0.097	1.13	9.3
78	+1	0	0	0	0	0.116	0.65	8.6

## C.5 Polynomial Expressions

The computation of the coefficients for polynomial expression was done by the least squares method. The coefficients are used in the equations shown in Table C-4 and C-5. These equations are in the coded form and must be used in conjunction with the coding equations shown in section C.2, Also the equations in Tables C-6 and C-7 should be considered applicable only within the coded range of +2 to -2. No estimate of accuracy is established for values outside of this range. The coefficients shown in Tables C-6 and C-7 are shown to 3 significant figures because the measured values were reported to two or three significant figures. The extra figures shown in the computer printout in Appendix A are of no significance.

# 4.3.6 Reduction of Equations to Simpler Form

The polynomial equations in Tables C-4 and C-5 include all first and second order terms whether or not they are significant. All terms of order three or more are assumed to be insignificant. In order to further reduce the number of terms in the equation, a "t" test was applied to each coefficient. From the "t" test terms can be eliminated if their effect is not greater than the effect of random errors at a specified confidence level. Normally a 95 percent confidence level is chosen.

The central composite design which contained a 1/2 replicate factorial design, i.e., the tests run at a 3.8 mm Hg CO₂ level has 8 degrees of freedom, 23 tests were run and 14 regression coefficients plus 1 constant were determined.

At the 95% confidence level and with 8 degrees of freedom, the "t" value must exceed 2.306 in order to be significant. This critical value of "t" can

## Table C-4

## Polynomial Equation for Responses

at  $p_{CO_2}$  equal to 7.6 mm Hg

$$\begin{array}{r} Y_2 = \frac{1b \text{ H}_20}{1b \text{ CO}_2} = 0.693 + 0.07291 \text{ X}_1 - 0.0162 \text{ X}_2 - 0.212 \text{ X}_3 - 0.0121 \text{ X}_4 - \\ = 0.0571 \text{ X}_1^2 - 0.0158 \text{ X}_2^2 - 0.0721 \text{ X}_3^2 - 0.00956 \text{ X}_4^2 - 0.00687 \text{ X}_1 \text{X}_2 + \\ = 0.0194 \text{ X}_1 \text{X}_3 - 0.0244 \text{ X}_1 \text{X}_4 - 0.0456 \text{ X}_2 \text{X}_3 + 0.0406 \text{ X}_2 \text{X}_4 - 0.0156 \text{ X}_3 \text{X}_4 \end{array}$$

$$Y_3 = \frac{kwhr}{1b co_2} = 5.14 + 0.242 x_1 + 0.400 x_2 - 4.01 x_3 + 0.367 x_4 - 0.971 x_1^2 - 1.12 x_2^2 + 5.44 x_3^2 - 1.18 x_4^2 - 0.700 x_1 x_2 + 1.06 x_1 x_3 - 0.713 x_1 x_4 - 0.275 x_2 x_3 + 0.600 x_2 x_4 - 0.838 x_3 x_4$$

### TABLE C-5

## Polynomial Equations for Responses at

 $p_{CO_2}$  equal 3.8 mm Hg

$$x_1 = 0.118 + 0.0347 x_1 + 0.0127 x_2 + 0.0117 x_3 + 0.0145 x_4 - 0.00969 x_1^2 - 0.00068 x_2^2 - 0.0171 x_3^2 - 0.0101 x_4^2 - 0.00912 x_1 x_2 - 0.0176 x_1 x_3 - 0.00637 x_1 x_4 + 0.00237 x_2 x_3 - 0.0174 x_2 x_4 - 0.02262 x_3 x_4$$

$$x_2 = 0.893 - 0.0900 x_1 + 0.00249 x_2 - 0.0869 x_3 - 0.142 x_4 + 0.0119 x_1^2 - 0.0418 x_2^2 - 0.153 x_3^2 - 0.0143 x_4^2 + 0.0212 x_1 x_2 + 0.00874 x_1 x_3 - 0.136 x_1 x_4 + 0.00124 x_2 x_3 + 0.219 x_2 x_4 + 0.0137 x_3 x_4$$

$$x_3 = 7.66 - 15.5 x_1 - 0.875 x_2 - 0.875 x_3 - 1.42 x_4 + 6.79 x_1^2 - 0.814 x_2^2 + 1.26 x_3^2 + 0.211 x_4^2 - 1.45 x_1 x_2 + 2.75 x_1 x_3 + 2.17 x_1 x_4 - 2.22 x_2 x_3 + 12.3 x_2 x_4 + 1.15 x_3 x_4$$

## TABLE C-6

Simplified Equations at 95% confidence level

$$p_{CO_2} = 3.8 \text{ mm Hg}$$

$$y_1 = \frac{1b + co_2}{hr} = 0.117 + 0.0261 + 0.0117 + 0.0117 = 0.00960 + 0.0170 + 0.0170 = 0.0100 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0170 = 0.0$$

$$Y_2 = (\frac{1b H_2 O}{1b CO_2}) = 0.859 - 0.132 X_4 - 0.148 X_3^2$$

$$Y_3 = (\frac{kwhr}{lb co_2}) = 8.16 - 15.5 X_1 + 6.71 X_1^2 + 12.3 X_2 X_4$$

TABLE C-7

Simplified Equations Removed from Coded Form

$$p_{CO_2}$$
 = 3.8 mm Hg

95% confidence level

$$Y_1(\frac{16 \text{ CO}_2}{\text{hr}}) = -0.6447 + 0.01397 \text{ A} + 0.165 \text{ C} + 0.050 \text{ D} - 0.000096 \text{ A}^2 - 0.0025 \text{ D}^2 - 0.00176 \text{ AC}$$

$$Y_2(\frac{1b H_20}{1b CO_2})$$
 = +0.187 + 0.888 C - 0.066 D - 0.148 C²

$$Y_3 \left(\frac{\text{kwhr}}{\text{1b CO}_2}\right) = 238. - 5.576 \text{ A} - 41.0 \text{ B} - 12.3 \text{ D} + 0.0671 \text{ A}^2 + 4.1 \text{ BD}$$

where A = Cycle Time, minutes

B = Air Valve Delay, minutes

C = Water Flow, gal/hr

D = Air Flow, cfm

be found in most statistics books. The values of "t" for the individual regression coefficients are shown in the computer printout in Appendix A.

Simplified equations can be obtained by dropping the insignificant terms from the equations; however a better method is to select the terms whose "t" values approach or exceed the critical "t" value of 2.306 and to refit the data to these points by the sum of leasts squares methods. New regression coefficients and new "t" values are obtained. The new coefficients give the best fit for the terms used and the new "t" value reconfirm that the appropriate term was chosen. The simplified equations for tests run at a 3.8 mm Hg CO₂ partial pressure are listed in Table C-6.

The simplified equations shown in Table C-6 are in the coded form for the independent variables. These equations can be combined with coding equations given in section C.2 to yield the simplified equations in terms of the measured independent variables. These are shown in Table C-7.

The results from the composite design that was run at a CO₂ partial pressure equal to 3.8 mm Hg showed a high degree of correlation. This is verified by the multiple correlation coefficient which ranged from 0.849 to 0.983 for the overall test design as shown in Appendix A. A multiple correlation coefficient of 1.0 would signify perfect correlation. The multiple correlation coefficients range from 0.676 to 0.942 for the reduced equations. Again the F values verified the high degree of correlation.

The composite design run at a CO₂ partial pressure of 7.6 mm Hg showed poor correlation. This is determined by the multiple correlation coefficient which ranged from 0.614 to 0.741 and the low F values and low "t" values. The

terms for  $Y_1$  did not show significance until the confidence level was reduced to 70 percent. The terms for  $Y_2$  showed only one significant term at the 90% confidence level and the terms for  $Y_3$  showed only one significant term at the 95% confidence level. Therefore simplified equations were not determined for the responses for the composite design at 7.6 mm pCO $_2$ .